济宁华矿机械设备有限公司 > 服务支持 > 家用角磨机2000瓦的上光机青州炜锋打药机

原标题:家用角磨机2000瓦的上光机青州炜锋打药机

浏览次数:139 时间:2020-01-11

  1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

  二、少耕法 少耕法是一种改变以犁耕为中心的耕作方法,可大大减少或完全免去耕耘作业,把作物种子直接播在前作茎秆覆盖的土壤中。这种耕作法,主要是为了和干旱、风蚀及水蚀作斗争。早在几百年前,我国东北地区应用扣、耕作法,特别是原垄种法,即为适应春寒的一种少耕法。50年代在苏联推广的马尔采夫耕作法,是采用无壁犁的深松耕作,也属于少耕法。60年代美国也发展了这一耕作法。70年代我国黑龙江省亦进行了深松耕作法的试验和推广;80年代我国南方水稻地区正进行着少耕法的试验和推广工作,并相应的研制了少耕法机械化配套农业机械。 思考题 1、铧式犁的基本构造和类型? 2、主犁体的结构及各部件的功用? 二、耕层土壤的动力特性 (一)土壤与金属间的摩擦系数 (二)土壤的坚实度(又称贯入阻力) (三)土壤的凝聚力和附着力 (四)土壤的抗剪强度 (五)犁耕土壤比阻 (一)土壤与金属间的摩擦系数 为克服在耕作机械工作部件工作表面上产生的土壤与金属间的摩擦力,大约消耗拖拉机牵引功率的一半。 摩擦力F通常按下列公式计算: F=fN 式中 f—摩擦系数; N—正压力。 (二)土壤的坚实度(又称贯入阻力) 当压缩非密实土壤时,使其压痕的容积为1厘米3时所需的力称为单位压实力q0(公斤/厘米3)。当以一定断面形状(圆形、锥形等)的柱塞压入土壤,其压陷深度为h0时,作用在土壤上的平均压力称为土壤的坚实度p0 p0=q0 h0 (kg/cm2) (三)土壤的凝聚力和附着力 土壤同金属接触面之间的附着力,几乎完全是因水膜的表面张力所造成的。因此,附着力也与土壤质地、含水量、接触面的材料和光洁度等因素有关。土壤沿着耕地机械工作表面的滑移阻力 T=F+F′=μN+μ′N′A′ 式中 μ—土壤对钢的摩擦系数 N—作用在工作表面上的法向载荷 μ′—附着系数 N′—由水膜吸附作用而产生的法向载荷 A′—吸附水膜的面积 当摩擦力和附着力大于土壤凝聚力和内摩擦力时,农具的工作表面就会粘土。工作部件表面粘土,不但会使耕作质量变坏,而且会增加牵引阻力。 (四)土壤的抗剪强度 耕层土壤在耕作机械工作部件(如犁体、中耕铲等)作用下,往往出现剪切破坏,其剪应力大致服从库伦定律: ι= c +σtgρ 式中 ι—剪应力(kN/cm2) σ—剪切面上的法向压应力(正应力); c —单位粘结力(kN/cm2),是同类粒子间相互结 合在一起的作用力; tgρ—土壤与土壤之间的摩擦系数,又称土壤的内摩擦系数; ρ—土壤的内摩擦角。 (五)犁耕土壤比阻 为判别耕层土壤耕作难易程度,常常采用犁耕土壤比阻Kt,kN/cm2或kPa。但Kt值大小不仅和土壤的物理性质有关,而且很大程度取决于犁的结构(犁体曲面和小前犁曲面几何参数和形状,犁铧锐钝程度,犁重以及是否有犁刀等)和耕速。一般可采用空间测力或单犁体的线性测力,测得与前进方向相反的犁耕阻力分量Rx,在此测力犁上一般不装 犁侧板,所以Rx是有效阻力。则犁耕的有效土壤比阻 第三节铧式犁的一般构造和工作原理 一、铧式犁的类型 二、铧式犁的基本构造 三、铧式犁的翻垡原理 一、铧式犁的类型 (二)、青州炜锋打药机铧式犁的基本构造 (三)、铧式犁的翻垡原理 一 矩形土垡的翻转过程 二 矩形土垡宽深比K的确定 三 菱形土垡的翻转过程 四 窜垡过程 三 菱形土垡的翻转过程 四 窜垡过程 二、犁体曲面的形成原理 (一)水平直元线法形成犁面的原理 (二)倾斜直元线法形成犁体曲面的原理 (三)曲元线法形成犁体曲面的原理 三、高速犁体曲面 (一)发展高速犁的必要性 提高耕作机组生产率的主要途径有两方面,即增加机具的工作幅宽或提高机组的耕作速度。在拖拉机功率相同的条件下,增加耕速比加大耕作幅宽更为有利。因提高耕速后,可采用耕幅较窄的犁,家用角磨机2000瓦的从而降低金属耗量,减小购置费用,同时可采用轻型的轮式拖拉机。这样不但可减小轮胎下陷量,降低胎轮的滚动阻力,减小胎轮对耕层土壤的压实和破坏程度,而且还可提高机组对不平地面的适应性,改善机组的机动性。 犁耕速度是不断提高的。50年代一般耕速为4-6km/h,60年代提高到7-9km/h,目前高速犁的耕速为8-10km/h,有的可达12km/h。近几十年,大约每10年可提高耕速3km/h。因些,高速型犁体曲面的研究工作,已引起国外的普遍重视。 (二)高速型犁体曲面的基本要求 常速犁(耕速在7km/h以下)用于高速作业时,往往会使作业摄影师降低,如土壤抛掷过远,犁沟太宽,还会导致阻力陡增。 耕速与牵引阻力有以下关系: 式中 Pv-在耕速v(km/h)时的牵引阻力(kN); P-在耕速为4.83km/h时的牵引阻力(kN); V-犁耕速度(km/h)。 (三)高速型犁面的特点 高速型犁体可以从常速的熟地型(碎土型)、通用型和翻垡犁体通过试验和个性设计出来,使之适应高速作业。 高速型犁体曲面的基本特点是:犁体较长,铧刃角较小,纵剖和横剖曲线族较为平坦,犁翼部分后掠和扭曲较大。这样,可使土壤的垂直与侧向分速不致比常速增大过多,并改善翻垡性能。此外,犁体的最大高度也略高于常速犁,使土垡不致在高速时飞越项边线。 第五节 犁的牵引阻力 一、土壤对犁体曲面的反作用力 二、犁的牵引阻力 三、减少牵引阻力的途径 一、土壤对犁体曲面的反作用力 土壤施加于犁体曲面上各部位的反作用力,其大小和方向是随犁体曲面的部位而变化的。由于土垡在犁体曲面上的运动方向在不断改变,因而曲面各处所产生的摩擦力的大小和方向也各不相同。因此要想求出犁体曲面上的受力分布情况,无论是用计算方法或是用实验方法都有一定的困难。但是土壤对犁体曲面上的反作用力又极为重要,不仅在设计犁时作为零件强度计算和总体受力平衡的依据,而且在使用犁时也是操作调节的依据。 目前,对犁体曲面受力情况主要从两个方面研究:一是求整个犁体曲面上总的受力情况,找出它的合力的大小、方向及其作用线,以便进行犁柱及犁梁的强度校核和犁的牵引平衡;二是探求犁体曲面各部位所受土壤反力的分布情况,用来确定犁壁和犁铧的磨损部位。这两方面的研究,目前都是用实验方法进行测定。前者采用六分力测定法,后者常采用电阻应变仪测定。 二、犁的牵引阻力 犁的牵引阻力是指土壤作用在犁上的总阻力沿前进方向的水平分力。这部分阻力直接关系到耕地机组的动力性和经济性。所以它是犁的主要性能指标之一。在满足作业要求的情况下,应尽量减小牵引阻力。犁的牵引阻力的计算,不仅是强度核算的依据,同时也是合理配置机组动力的依据。 三、减少牵引阻力的途径 关于减少犁的牵引阻力的问题,过去和现在世界各国都进行了大量的工作,目前在理论研究上和生产实际上所探讨和采用的方法和措施,有以下几方面: (一)机务技术措施 1.选择适耕期 选择土壤含水量适宜、残根腐烂适度的时间进行耕地。此时土壤的强度较小,易于松散破碎,可减少牵引力。 2.保持铧尖和铧刃锐利 锐利的铧尖和铧刃,切割破碎的能力强,刺入并切开土壤时所受的阻力较小,因此,勤摩铧刃和勤换犁铧,保持铧尖和铧刃锋利,可以显著地减少犁的牵引力。 (二)设计制造方面的措施 从设计制造方面来减少犁的阻力,现有方法有三个方面: 1.良好的犁体曲面设计是减少阻力的重要因素。曲面形状塑造得好,各项参数选择得当,对减少犁的阻力有很大的影响。犁体曲面除了满足翻土、碎土等性能要求而外,欲使其阻力较小,还须1)对土壤的挤压较小,土垡能在犁面上顺利滑过;2)在翻垡过程中,垡片重心的提升高度小,因而位能变化小;3)土垡在翻转过程中发生的位移小;4)土垡运动时的绝对速度小,所消耗的动能小。这样,所需的牵引力也就较小。 2.用两种软硬不同的材料制造犁铧,使刃口能够自己磨锐,这种自磨刃犁铧经过热处理后,表面部分的材料硬度和耐磨性很大,上光机背面的材料则较软,不耐磨。这样,当犁铧在耕地时,表面磨损慢,背面磨损快,因而可以使刃口始终保持锋锐。 3.采用非金属特殊材料。目前有些国家已用特制的塑料薄膜敷贴在犁壁上,此种塑料与土壤的摩擦系数很小,且甚耐磨,这样可以减少犁的阻力 (三)新方法和新原理的探讨 探讨一些新方法和新原理来减少犁的阻力,目前也有一些进展。 1.在减少摩擦阻力方面有两种方法。一是改固定部件为转动部件,使滑动摩擦变为滚动摩擦;一是犁体曲面上加润滑剂。在前一种方法中有将犁壁制成由许多滚柱组成的曲面;有的曲面上嵌设滚珠者,但因制造复杂及其他技术问题没有解决,现在尚未推广。利用滚轮来代替犁侧板的犁,则已在生产中使用。匈牙利曾设计了一种利用一个能够转动的锥形滚筒来代替犁壁翼部的滚子犁。滚筒系同不粘土的材料作成。据试验这种犁可以减少10-15%的牵引力。 在犁曲面上加水作润滑剂以减少阻力的办法,据试验可以减少阻力30%。家用角磨机2000瓦的加水的方法是将犁体曲面上的螺钉中央通一小孔,孔的开口处是一向土垡运动方向倾斜的缝,(倾斜是为了避免为泥土堵塞)。水箱置于机架上,用软管在犁壁背面与螺钉连通。据实验,这种方法在透水性差的粘土中效果较好,在砂土中则较差。 第六节 铧式犁的总体配置 一、犁的总耕幅和铧数 总耕幅根据拖拉机的有效牵引力P来确定。假设所在地区的土壤耕作比阻为k,要求的耕深为a,单个犁体的幅宽为b,则犁的铧数(多铧犁的犁体数)可用下式算出: 因 P=nkab 故 n取整数。 在P、b、n确定后,为了考虑这台犁的适应能力,可将前式写成: c为一已知的常数。上式表明,一台犁耕机组在作业时,如果土壤的比阻较大,则犁的耕深要适当减小,否则牵引力P不足;如果要求耕得较深,则只能在土壤比阻较小的地方使用。二者之间是一个等轴双曲线函数关系。 即 ka=c 将上式按拖拉机的额定牵引力绘成曲线所示。这就可以清楚地看出该机组对不同耕深和不同土壤的适应能力。不同牵引力可获得不同的曲线。 二、犁体间距 多铧犁相邻两犁体间的间距是犁的一个重要参数。间距太小,没有足够的空间让垡片通过就会造成堵塞;间距太大,则将增加犁的长度,这不仅浪费钢材,对于牵引式犁还将使转弯半径增大,对于悬挂式犁则因重心后移,会影响机组的纵向稳定性。因此,在保证垡片能顺利通过的前提下,犁的间距尽量缩小。 犁体间距的表示方法,国内外都不一致。有的用纵向间距S(相邻犁体在纵向铅垂面上的投影距离),有的用铧尖距Ss(相邻犁体的铧尖点或两对应点之间的距离),有的用犁体配置角α(各犁体在犁上所形成的斜线),它们之间的关系为: tgα=b/s,sinα=b/ss。 三、拖拉机轮距与犁的工作幅宽 一般的轮式拖拉机,因受牵引力限制,轮距总是大于犁的耕幅,为此,通常是让拖拉机一侧的轮子走在犁沟内。拖拉机的轮胎内侧在横的方向应与沟墙保持δ=1—2cm的间隙,犁的阻力中心应处于拖拉机的中心线上(或很靠近)。这样可使机组具有较好的牵引稳定性。如若差距较大应对拖拉机轮距进行调整使之符合下列关系式: BT=B+E+2δ+b/2 此处Br是拖拉机倾斜后的轮距投影,b/4是阻力中心与胫刃边的距离,b为单铧幅宽。 对于轮子不能进入犁沟内的履带拖拉机或后轮是两轮并联的大型轮式拖拉机,当轮子或履带在未耕地上时,轮胎或履带外侧与沟墙线保持的距离δ′应不小于10cm,以免压塌沟墙。这时,犁的阻力中心,亦应处于拖拉机的中心线附近,以免产生偏转力矩。 四、第一铧的配置 无论是轮子走在沟内的机组,或履带走在未耕地上的机组,第一铧的横向位置均应将铧翼末端置于沟墙线上,使第一铧的切垡宽度正好等于b。 第一铧的纵向位置,对于轮子走在沟内的悬挂式机组,铧尖与轮子外缘的纵向投影距离e一般不小于犁体的幅宽b(图2-65)。对于牵引式或半悬挂机组则应考虑机组在900牵引时,拖拉机不会与犁架碰撞。 五、犁的梁架高度 犁的梁架高度是指犁架下表面至犁底平面的空间高度。为了保证垡片在犁架下面顺利翻转,不产生拥土堵草现象。一般是根据矩形土垡的厚度(按最大耕深计算)加割茬高度的对角线高度计算,即 式中:H为梁架空间高度,b为犁体耕宽,max为最大耕深,h为割茬高度。 对于采用直犁柱和主斜梁结构的犁,因垡片主要是在主斜梁的下方翻转,故H的数值应适当加大。而对于钩形犁柱的梁架,则因垡片是在梁架外侧翻转,故可比前者略小。 第七节 犁耕机组 一、悬挂犁机组 二、悬挂犁的悬挂参数选择和挂结调节原理 一、悬挂犁机组 (一)悬挂犁的挂接方式 悬挂犁一般采用后悬挂型式,通常以三点悬挂方式和拖拉机相结合。所谓三点悬挂,就是用三根杆分别把拖拉机后部的三个点和犁上的三个点铰接起来,而使二者成为一体。 (二)工作状态与纵垂面内的受力分析 1.“浮动”状态 油缸内无压力,悬挂犁由地面支承,随地形起伏而浮动。 2. “位调节”状态 作业机下降到所要求的耕深时,利用液压系统将机构锁定,使作业机与拖拉机结成一个整体,作业机与拖拉机在纵的方向不能产生相对运动。这种方式在地面平坦时,即使土质软硬不一,也可使耕深较为一致。但在地面起伏不平时,作业机随拖拉机的头尾起伏而上下波动,难以保证作业质量。 “位调节”状态的机构受力 二、悬挂犁的悬挂参数选择和挂结调节原理 犁与拖拉机通过悬挂机构结成一个悬挂犁机组,进行耕地作业,目前三点悬挂机构的应用较广泛。悬挂犁的悬挂参数有下悬挂轴至犁体支持面的距离h,上下悬挂点的距离H(犁架立柱高度),悬挂轴的长度B以及两下悬挂点与犁梁的相对位置。在设计或挂结调整悬挂犁时,合理地选择这些参数,对保证犁耕质量,提高机组的牵引性能有很大的影响。 ·在犁入土时,能使犁平稳而迅速地达到预定的耕深,入土行程短; ·在犁耕过程中,当土质不均匀或地表起伏时,犁具有良好的耕深耕宽稳定性。如有偏差,迅速地自动纠正; ·机组有良好的牵引性能和直线行驶性; ·能进行耕深耕宽等调整,犁的纵轴与机组前进方向一致,多铧犁前后犁体耕深相同; ·在运输状态,有足够的运输高度,纵向稳定性和通过性好。 (一)纵垂面悬挂参数的选择 (二)水平面悬挂参数的选择 在水平面内的悬挂参数,应满足耕宽稳定、机组直线行驶和操作省力的要求。 1.耕宽稳定性 2.机组的直线行驶性能 第八节 牵引犁和半悬挂犁犁耕机组 一、牵引犁机组 二、半悬挂犁机组 一、牵引犁机组 (一)在纵垂面内的受力和影响工作性能的因素 (二)在水平面内的受力和影响工作性能的因素 二、半悬挂犁机组 就牵引方式来说,半悬挂犁分为三拉杆牵引与两拉杆牵引两种类型。当拖拉机上拉杆装有传感器时,犁通过悬挂头架与拖拉机上下拉杆铰接为三拉杆牵引。上光机当拖拉机下拉杆装有传感器时,犁只与拖拉机的两个下拉杆铰接为两拉杆牵引。二者前端均有水平横轴与铅垂立轴,犁可在水平面与纵垂面绕轴摆动,有两个自由度。半悬挂犁均装有尾轮与限深轮。高度调节机组的限深轮装在犁的前部,力调节机组的限深轮装在犁的后部,均走未耕地。 一、总言 旋耕机是一种由动力驱动的土壤耕作机具。其切土、碎土能力强,能切碎秸杆并使土肥混合均匀。一次作业能达到犁耙几次的效果,耕后地表平整、松软、能满足精耕细作的要求。旋耕机作业时,拖拉机的动力以扭矩的形式直接作用于工作部件,不需要很大的牵引力,避免了拖拉机由于受附着力的限制,功率不能充分利用的问题。 我国南方地区多用于秋耕稻茬田种麦,水稻插秧前的水耕水耙。它对土壤湿度的适应范围较大,凡拖拉机能进入的水田都可进行耕作。我国北方地区大量用于打茬,起到秸杆还田、铲茬肥田的作用。另外,还适于盐碱地的浅层耕作,以抑制盐分上升,围垦荒地灭茬除草,牧场草地浅耕再生等作业。 二、旋耕机类型 旋耕机的类型很多,按其工作部件的运动方式可分为水平横轴式、立轴式等几种。 (一)水平横轴式旋耕机 (二)立轴式旋耕机 水平横轴式旋耕机工作时(图2-86),刀片一方面由拖拉机动力输出轴驱动作回转运动,一方面随机组前进作等速直线运动。刀片在切土过程中,首先将土垡切下,随即向后方抛出,土垡撞击到罩壳与拖板而细碎,然后再落回到地表上。由于机组不断前进,刀片就连续不断地对未耕地进行松碎。 三、横轴式旋耕机械的理论分析 各种驱动式耕耘机械,由于其工作原理各不相同,因而工作部件的运动情况,也不相同。下面着重对目前使用较为广泛的横轴类旋耕机械的有关理论进行一些分析。 (一)刀齿的运动轨迹 1.刀齿运动轨迹方程 旋转耕耘机的刀齿,无论其为何种形状,它在工作时的绝对运动均系由两种运动合成。如图2-99所示一种运动是由于安装刀齿的轴转动时刀齿绕轴心旋转所形成的圆周运动,另一种运动是机器不断前进时所具有的直线运动。旋转耕耘机在工作时,这两种运动同时在刀齿上产生,刀齿的绝对运动就是由这两种运动合成的结果。 四、刀齿类型及排列 1.刀齿的类型 横轴旋耕机的刀齿有刚性和弹性两大类。刚性刀按其外形分,有直刀、L形刀、弯刀、凿形刀齿等类型。 其中直刀齿有钉齿型、直棍型、直刀片型等,刀体平直,结构简单,主要用于对已耕翻的土地进行碎土作业;L形发、弯刀和凿形刀则可用于初耕。 六、横轴式旋耕机组总体分析 (一)整机工作幅宽 器走过距离S即刀轴中心经过O1、O2、O3、……而至On时,刀齿端的轨迹即为m1、m2、m3、………、mn所连成的曲线。如果S为旋转轴旋转一周时机器前进的距离,则此时刀齿绕其轴心旋转一周后其运动轨迹亦完成了一个行程周期,当旋转轴继续转动、机器继续前进时,刀齿端点的运动轨迹即为此段曲线的重复出现。显然,在图2-100所示情况下,S<2πR。 πR。 当刀齿的转动半径R、旋转角速度ω以及机器的前进速度vm已知时,刀齿的运动轨迹可根据上述原理用作图法绘出。关于刀齿运动轨迹的方程式,可建立如图2-101所示的坐标系。设位于坐标轴y上的刀齿A0O以角速度ω经过t秒钟转动后,其角位移为φ,此时刀齿轴心移动的距离为x0,刀齿端点的位置则移至m点,点m的水平位移为x,铅垂位移为y。 则因 φ=ωt, 或t=φ/ω 故x0=vmt=vmφ/ω。又因ω=u/R,所以x0=Rvmφ/u 刀齿的轨迹曲线系由运动的m点所形成,故其曲线的方程式为 此式为参数方程式,消去参变数后得 此曲线即解析几何上的摆线,亦称旋轮线(Cycloid)。 将x0代入并整理得: (1)当u/vm=λ=1时,方程变为 此式系一标准的摆线πR。具有这种运动特性的刀齿只能象自由轮的轮爪一样刺入土中,不能起到松碎土壤的作用。 2.刀齿轨迹的性能特征 从刀齿运动的轨迹方程式得知,刀齿运动轨迹曲线的形状与刀齿的半径R、圆周线速度u以及机器前进速度vm有关。由于R、u和vm的不同,此曲线时,刀片端点在任何位置的绝对运动水平位移 的方向均与机器前进方向相同,故刀齿不能拨土向后。刀齿对土壤的作用还不如被动式牵引机具的作用大。这种曲线数学上称为短辐摆线时,刀齿转动到一定部位,它的端点绝对运动的水平位移就会与机器前进的方向相反,因而能以刀齿的刃口切削土壤。具有这种运动的曲线),此种摆线具有一个绕扣。MN为绕扣的横弦。当vm/u值愈小时,绕扣的横弦愈大。若vm=0(即机器停止前进时)则绕扣即为一圆,其最大横弦等于2R。 (二)刀齿的切削速度 刀齿端点在旋转一周的过程中,所经各处的速度是不同的。将方程对时间求导数得: 刀片端点的绝对速度为: 从上式可知,当刀齿端点处于最低位置即ωt=2nπ时,绝对速度最小vmin=vm-u,在vm<u时,方向为水平向后;当刀齿端点处于最高位置即ωt=(2n+1)π时,绝对速度最大,vmax=vm+u,方向为水平向前。 刀齿运动轨迹曲线的绕扣大小与vm/u的值有关。vm/u的值愈大时,绕扣愈小;反之,青州炜锋打药机则绕扣愈大。若vm/u=0(即机器停止前进时),则绕扣与轨迹曲线均为一个半径为R的圆。 绕扣的最大横弦MN可以从图2-104中得知,因刀齿在最大横弦N点处其绝对速度的方向是垂直向下。 于是有 sinφ= vm/u 故最大横弦距沟底的高度 Hmax=R-Rsinφ=R(1- vm/u) (三)刀齿工作深度 可以看出,在最大横弦的N点以上,刀齿沿水平方向的分速度vx为向前,N点以下则向后。因此一般用途的旋耕机刀齿入土处,均在N点以下,以利于向后抛土,减少功耗。为此,旋耕机的工作深度ha,通常是以不超过最大横弦处为度。由前式可知,刀齿的半径R较大或vm/u的比值较小时,刀齿的耕作深度可以较大 (四)切土进距 在刀齿旋转的同一纵向平面内,前后两相邻刀齿的切土间距,称为进距。亦即在两刀齿相继切土的时间间隔内,机器前进的距离Sx(图2-105)。假设某旋耕机的刀盘上均布安装z把刀齿,则刀盘旋转一周时,刀齿相继切土的时间间隔为ts=2π/(2ω)。在此时间内,机器前进的距离Sx即为切土进距。 式中n为刀盘转速。 旋耕机两个纵向相邻刀齿相继切土后,耕层底部存在一个凸起部分。此凸起部分是没有耕到的生土,其高度与刀齿的运动轨迹和进距有关,而由前后两刀齿轨迹的交点C确定。如图2-105所示,在交点C处,凸起高度hc=R(1-sinφc) 此处,前一刀齿转角ψc=arcsin(1-hc/R) 后一刀齿转角φ’c=2π/z+π-2φc (五)沟底凸埂高度 此时刀辊中心的移动距离为 此处ω=u/R 又因 令上两式相等并整理后得 上式即为凸起高度hc与u、vm、R和z的关系式。但利用此式求hc的数值亦很麻烦,为了简便,沟底凸埂高度也可用下述方法近似地计算,即利用轨迹方程式: 当φ′的数值不大时,可以认为 sinφ′=φ′ 故 因 xc=sx/2, 且sx=2πRvm/(zu) 代入上式并化简得 故 上面所计算的凸起高度是假定在旋耕刀齿切土时,所切下的垡片和沟底的土壤均能按刀齿所经过的轨迹,保持完整的几何形状而推导出来的理论公式。实际上凸埂并不能形成图中所示的尖角状,这是由一垡片被刀齿从土体切下时,其尾部与土体连接处因强度减弱,刀齿接近尾部时即因受剪切或撕拉而断裂,因而不能形成纯几何图形上的那种尖角。试验表明,凸埂高度的实际值只有理论值的1/2-1/3左右。 在选择悬挂参数时,应满足以下要求: 1.入土性能 3.牵引性能 4.运输通过性 5.确定纵垂面悬挂参数的要点 2.耕深稳定性 (三)悬挂犁的挂结与调整 1.挂结原则 2.耕深调节 3.耕宽调整 4.偏牵引调整 5.正位调整 6 .纵向水平调整 7.横向水平调整 第九节 旋耕机 一、总言 二、旋耕机类型 三、横轴式旋耕机械的理论分析 四、刀齿类型及排列 五、横轴旋耕机的功率消耗 六、横轴式旋耕机组总体分析 (一)水平横轴式旋耕机 图(2-87)是曲刃弯刀式旋耕机,主要由机架、传动系统、旋转刀轴、刀片、耕深调节装置、罩壳等组成。刀轴和刀片是主要工作部件,由拖拉机动力输出轴来的动力经万向节传给中间齿箱,再经侧边传动箱驱动力轴回传。 图2-88是钉齿式旋耕机。钉齿为一直圆钢制成,沿辊轴直径方向1800贯穿并予以固定。图2-89是星轮式旋耕机。刀辊由多个带钉齿的星轮组成。星轮盘面不与刀辊轴线垂直,每个星轮的偏斜方向均不同。图2-90是滚笼式旋耕机。旋转滚筒由若干个笼形部件沿轴向排列组成。用于水稻插秧前平整田面。有较好的耥平和起浆效果。图2-91所示为梳齿式旋耕机。将多个齿棍纵向固定在扭曲的人字形长刀片上。碎土性能好,且沟底平坦。 图2-92是几种有翻土功能的旋耕刀。图2-92a所示的转柄旋耕刀能将切下的土成形垡片翻转约1800,它的刀柄装在与刀轴一起旋转的套管上,套管的里面还有一个静止的心轴。心轴有导槽,锄柄上的横销嵌入导槽中。当旋耕刀切下土块并将其带到一定高度时,刀柄上的横销就碰到导槽的斜凸部分,迫使刀柄偏转。于是刀面侧倾将土块翻转落下。图2-92b所示为带有托土板的旋耕刀盘。当刀齿切下土块时,托土板正好托住土块的上端将其送到后方翻转落下。图2-92c是带有弹性拖板的旋耕刀。当刀片切入土中时,弹性拖板随切缝弯曲进入缝中,将切下的土块托带到后方一定高度然后弹片伸直使土块翻转落下。 图2-93所示是锤片碎土灭茬机的多种锤片。这种机具的整机结构与一般水平横轴式旋耕机相同,只是工作部件是锤片而不是刀齿。锤片用活动铰链与转轴联结。利用高速旋转时的惯性力来打碎禾茬、硬土块或草皮层。 还有一种新创造的水平横轴式旋耕机,它的刀齿不需要另外的动力驱动,而由旋耕刀辊自身驱动,如图2-94所示,这种旋耕机有两个刀辊,一前一后。工作时机组前进,前刀辊的刀齿入土后,土壤阻力迫使前刀辊转动并通过链条带动后刀辊旋转。利用链传动的速比关系,后刀辊的转速比前刀辊快约三倍。后刀辊的刀齿将土壤弄松碎并向后抛送。前刀辊因要带动后刀辊工作,所需扭矩较大,致使入土的刀齿在土中产生向前的局部滑移。这种滑移现象的实际效果是前刀辊的刀齿一方面向前耕松一些土壤,另一方面获得扭矩驱动后刀辊旋转。而前刀辊将土壤弄松成大土块,也使后刀辊的负荷减轻。对于土质不同和耕作要求不同时,可以调整前后刀辊的相对入土深度,使彼此协调工作可以获得满意的结果。 (二)立轴式旋耕机 刀齿或刀片绕立轴旋转的旋耕机,其突出功能就是可以进行深耕,一般都能达到30-35cm,较深的能达到40-50cm,而且可使整个耕层土壤疏松细碎,但前进速度较慢 图2-95是安装在手扶拖拉机前面的桨叶式旋耕机(亦称旋桨式犁)。它的叶轮象一个竖立着的船用螺旋桨,工作时,叶片旋转将土壤铲起,并向一侧抛出,耕后象铧式犁一样留有耕沟。因其向一侧抛土,故侧向力较大。工作幅宽约等于叶轮的外缘直径,耕作的最大深度可略大于叶轮高度。一般耕深20-30cm。图2-96所示的这种立轴爪式旋耕机是英国人所制,他们称为“Gyro-tiller”。两个转盘相对旋转,刀齿位于转盘周边,轴向固定(略微前倾),一般耕深30-50cm。图2-97所示是日本常用的立轴刀笼式旋耕机。2-5个倾斜的窄条形刀片构成一个圆形刀笼旋转切土。刀笼高度约30-35cm,一般耕深20-30cm。图2-98是一种立轴转齿式旋耕机。它的工作部件是由两个钉齿构成“门”字形的转子。多个转子横向排列成一排。两个相邻的转子由两个齿轮直接啮合驱动。因此,每个转子与左、右相邻转子的旋转方向相反。转子在安装时,相邻转子的“门”形平面均互相垂直,故可互不干扰,并使相邻钉齿的活动范围有较大的重叠量以防止漏耕。由于钉齿的圆周速度比机器前进速度要大得多(2倍以上),故每个钉齿在地面上经过的路线都是长辐摆线,因而钉齿有较好的碎土效果。家用角磨机2000瓦的 在图2-99中假设u、vm均为等速运动,则刀齿上任意点的运动轨迹,均系一有规律的曲线所示,在刀齿旋转前进的过程中,设刀齿轴心所在的位置原为O0,某一刀齿(O0m0)的端点为m0。该刀齿按图中箭头所示的方向转过△φ1的角度时,轴的中心由O0前进至O1(这种情况称为正转),此时刀齿端点的位置则由m0移至m1;当刀齿连续再转过△φ2时,轴的中心将再前进一段距离而至O2,此时刀齿端点的位置则由m1移至m2,如此继续下去,当机 πR。 土垡翻转的目的是为了彻底的翻扣地表杂草和病虫害,实现土垡的稳定铺放既彻底翻扣(不要出现回垡现象)是犁体曲面工作和设计时的关键所在。是否回垡主要取决于曲面的形状,或者说是取决于曲面的设计参数。 a b 二 矩形土垡宽深比K的确定 我们观察这样一种现象:设土垡断面深度为a,宽度为b1、b2、b3,在翻转到某个时刻为土垡的临界状态。 回垡 临界 稳定铺放 b1 a b2 a a b3 当土垡翻转至最终位置时,如果支撑点在右侧,则可保证为稳定铺放,在正上方则为临界状态(不稳定状态),在左侧可产生回垡现象。很显然,在耕深不变的情况下,耕宽的改变可对土垡的稳定铺放产生重要的影响。通过正确的确定土垡的尺寸,决定犁体曲面的大小和形状,以保证土垡的稳定铺放。 我们以临界状态为研究对象,确定土垡翻转过程中不产生回垡的基本条件,为犁体曲面的设计提供依据。 ∵△ABC∽△ADE故有对应边成比例,并设b/a=k,则导出: AB/AC=AE/DE AC=b,AE=b,ED=a k4-k2-1=0 k≈1.27 b a A B C D E b 我们称b/a=k为理想土垡的宽深比。实际上土壤是不均质的,土垡在翻转过程中是要变形的,有的变形很严重,含水率高的粘重土壤变形较小,k≥1、27,对沙质土,土壤很难成形,犁体通过后立刻堆积,k≤1、27,一般k=1。 菱形犁体的胫刃向未耕地凸出,沟墙呈圆弧状,耕翻的土垡断面近似为菱形(图2-44a)。这种犁的特点是可以缩短犁体之间的纵向距离,犁沟较宽,阻力较小。 耕地时菱形土垡始终绕一个棱角翻转。直至土垡顶边和前趟已翻土垡的底边相靠贴(图2-44c)。土垡翻转至直立位置以前,其重心即已偏离支承点(向已耕地偏离),有利于稳定铺放。 土垡在“窜垡型”犁体曲面上的运动过程与前述滚垡过程不同。如图2—45所示,当土垡被犁体的铧刃和胫刃切开后,不是绕某一棱角滚翻,而是沿着得体曲面向上窜升,同时略有扭转和侧移。当土垡上窜到一定高度后,扭转和弯曲加大,并腾空翻转。土垡离开犁壁后,在重力和落地后的撞击作用下,土垡内的剪切裂纹发生断裂,并形成较短的垡块,称为断条。 第四节 犁体曲面 一、三面楔的工作原理 二、犁体曲面的形成原理 三、高速犁体曲面 一、三面楔的工作原理 犁体曲面是由犁铧和犁壁所形成的曲面。犁体的切土、碎土和翻土作用都是由犁体曲面来完成的。可以把犁体曲面简化成由几个简单的两面楔(工作面和支承面)复合成的一个三面楔。犁体的工作过程可以看成几个二面楔沿水平面运动时对土壤的合成作用。由于楔子在土壤中的安放位置不同,它对土壤的作用也不同。图2-46中的a、b和c分别表示两面楔的起土、侧向推土和翻土作用。 3.减少摩擦力 保持犁体曲面以及侧板、犁底、轮子等与土壤接触的部分光洁平滑(例如,犁闲置时,在这些地方涂上废机油或黄油,不使生锈;不以铁锤敲击犁体曲面等)。减少犁与土壤之间的摩擦,可以减少犁的牵引力。 4.正确装配零件 犁铧、犁壁、犁侧板等工作部件安装的位置正确,接缝严密,犁体上埋头螺钉与安装件表面平坦光滑,减少对土垡的阻碍,让土垡顺利滑动,可以减少犁的牵引力。 5.正确调整牵引线 在前面曾阐明当牵引线在纵向铅垂面上的倾角T和水平面上的偏角T,调整到一适宜的位置,即调整到使T和T分别等于其摩擦角时,犁的牵引阻力最小。因此,在耕地时,正确调整牵引线,也是减少牵引力的重要方法之一。 2.应用振动技术。世界各国在对土壤加工时,应用振动技术已逐渐广泛。根据各国的试验表明,在铧式犁的犁铧或其他耕作土壤机具的工作件上加装振动器,可以减轻牵引阻力约5-25%,并且改善碎土质量。振动式的犁可以减轻阻力的原因是因为振动件在频率较高时,它强大的振动力可以破坏土壤分子的粘结力。也有人认为土壤在受到较高频率的振动之后,会发生“振动液化现象”,使土壤的内摩擦力和抗剪强度均大大降低,因而可以减少阻力。 根据初步试验发现:振动犁所需的振动频率和振幅,应随机组前进速度增加而增加。当犁的前进速度小于1m/s时效果较好,振动频率以2000-3000Hs,振幅以0.5-3mm为宜。至于工作件的定向振动问题(即振动件的振动方向问题),目前尚在研究中。振动犁的振动件因需要消耗动力,故在总的能量消耗上是否经济亦无定论。 3.电渗作用的试验。电渗作用(图2-60)的原理是将犁刀和犁铧作为直流电的正极(+)和负极(-),通以直流电,因为土壤是导体,故电流在土中通过后由于电渗作用,土壤中的毛细管水向负极集结使犁铧表面形成一层水膜,起着润滑剂的作用,减少了摩擦阻力。同样,土壤由于有电流通过,土壤中的凝胶体变为溶胶体,降低了土壤分子的凝结力,因而降低了它的强度。根据国内外的实验结果,此法在潮湿土壤中效果较好,当水分为20%左右,电压为12-60V时,阻力减少约20%。 一、犁的总耕幅和铧数 二、犁体间距 三、拖拉机轮距与犁的工作幅宽 四、第一铧的配置 五、犁的梁架高度 第一章 耕地机械 引 言 第一节主要农业技术要求和农机具 第二节耕层土壤的动力学特性 第三节铧式犁的一般构造和工作原理 第四节犁体曲面 第五节犁的牵引阻力 第六节铧式犁的总体配置 第七节犁耕机组 第八节牵引犁和半悬挂犁犁耕机组 第九节旋耕机 引言 耕地是大田农业生产中最基本也是最重要的工作环节之一。其目的就是在传统的农业耕作栽培制度中通过深耕和翻扣土壤,把作物残茬、病虫害以及遭到破坏的表土层深翻,而使得到长时间恢复的低层土壤翻到地表,以利于消灭杂草和病虫害,改善作物的生长环境。 目前所使用的耕地机械,由于其作业的工作原理不同类型主要分为三大类: 铧式犁 圆盘犁 凿形犁 铧式犁应用历史最长,技术最为成熟,作业范围最广,铧式犁是通过犁体曲面对土壤的切削、碎土和翻扣实现耕地作业的.。 视频 圆盘犁是以球面圆盘作为工作部件的耕作机械,它依靠其重量强制入土,入土性能比铧式犁差,土壤摩擦力小,切断杂草能力强,可适用于开荒、粘重土壤作业,但翻垡及覆盖能力较弱,价格较高。 视频 凿形犁,又称深松犁。工作部件为一凿齿形深松铲,安装在机架后横梁上,凿形齿在土壤中利用挤压力破碎土壤,深松犁低层,没有翻垡能力。 根据农业生产的不同要求、自然条件变化、动力配备情况等,铧式犁在形式上又派生出一些具有现代特征的新型犁:双向犁、栅条犁、调幅犁、滚子犁、高速犁等。 视频 圆盘犁和凿形犁在欧洲国家应用较多,在中国虽有应用,但量较少,本章重点介绍铧式犁的基本结构、工作原理、设计方法和理论分析等。本章除课堂教学外,尚有二个实验实习——类型和结构;悬挂犁的调整。一个课程设计——犁体曲面测绘。 第一节主要农业技术要求和农机具 一、农业技术要求 二、少耕法 三、耕作机具 一、农业技术要求 1.耕地作业 耕深、上光机覆盖、碎土 2.整地作业 旱地与水田整地作业的农业要求差别很大,应分别情况区别对待,基本的要求有:靶深、碎土等. 三、耕作机具 1、播前耕作 耕地作业:铧式犁、圆盘犁 整地作业:圆盘耙、钉齿耙、水田耙、器、驱动耙、耢等 耕耙联合作业:悬耕机、耙耕机、回转锹 2、播后耕作 中耕培土作业:中耕机(水田旱地两类)、培土器 施肥、开沟、筑埂等作业:中耕培土施肥机、筑埂机、开沟机等 3、少耕法 浅松或深松作业:深松(凿形)犁、通用耕作机(深松、浅松、除草 播种、施肥、洒药等联合作业:联合种植机(深松、、播种、施肥洒药等)。 第二节耕层土壤的动力学特性 一、耕层土壤的物理特性 二、耕层土壤的动力特性 一、耕层土壤的物理特性 土壤的主要物理力学性质有以下几方面: (一)容重 (二)湿度(又称含水量) 式中 a—测力犁的耕深 b—测力犁的单铧幅宽 思考题 1、犁体曲面的主要类型? 2、理想土垡翻转的假设条件? 3、土垡宽深比的概念?它对工作 质量有何 影响? (一)、铧式犁的类型 牵引式——运输状态下,机具的重量全部由机具本身来承担。 悬挂式——运输状态下,机具的重量全部由拖拉机来承 担。 半悬挂犁——运输状态下,机具的重量前部分由拖拉机承 担,后半部分由机具承担。 铧式犁的工作特点 铧式犁的类型与特点—视频 机架 牵引悬挂装置 行走限深装置 主犁体 组成:犁架、主犁体、耕深调节装置、支撑行走装置、牵引悬挂装置等。主犁体为铧式犁的核心工作部件。 一 矩形土垡的翻转过程 理想土垡的翻转过程: a 1、土垡块在翻转过程中始终保持矩形断面; 2、始终有一个棱角与沟底相接触,既只有滚动而无滑动 。 ——理想土垡的翻转 因为土垡在翻转过程中是要变形的,为了研究的方便,我们作了如下假设:

本文由济宁华矿机械设备有限公司发布于服务支持,转载请注明出处:家用角磨机2000瓦的上光机青州炜锋打药机

关键词: 铧式犁

上一篇:斜管沉淀池图片挖掘机打黄油全部位置

下一篇:青岛盛华隆橡胶机械冰箱压缩机结构解剖图风幕